

Student details

Name:

Mark:

2024

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- Reference sheet is provided separately.
- Marks may be lost for poor working out and/or poor logic.

Total marks - 80

Section I Pages 2-5

10 marks

- Attempt Questions 1 10
- Circle the BEST solution.

Section II Pages 6 - 12

70 marks

- Attempt Questions 11 31
- Your responses should include relevant mathematical reasoning and/or calculations.

Section I

10 marks Attempt Questions 1 – 10

<u>Circle the BEST solution</u> below for Questions 1 - 10.

1 Which of the following is the solution for x: $\frac{x-4}{3-x} \ge 0$?

- (A) $x \in (-3,4]$
- (B) $x \in (-\infty,3] \cap [4,\infty)$
- $(C) \qquad x \in (3,4]$
- (D) $x \in (-\infty, -3] \cap [4, \infty)$

2 Which of the following is the unit vector between the points (-5,-1) and (-2,3)?

- (A) -35i + 20j
- (B) $\frac{4}{5}i \frac{7}{5}j$
- (C) -7i + 4j
- (D) $\frac{3}{5}i + \frac{4}{5}j$

PLEASE DO NOT DISTRIBUTE

3 Consider the equation
$$\sqrt{3} \sin x + \sqrt{2} \cos x = 2$$
.?

When using the auxiliary (transformation) method to solve for x, which one of the following would be an appropriate part of the working out?

- (A) Let $\sqrt{3}\sin x + \sqrt{2}\cos x = R\sin(x+\alpha)$, where $0^{\circ} < \alpha < 90^{\circ}$.
- (B) Let $\sqrt{3}\sin x + \sqrt{2}\cos x = R\cos(x-\alpha)$, where $0^{\circ} < \alpha < 90^{\circ}$.
- (C) Either (A) or (B).
- (D) Neither (A) or (B).
- 4 What is the area enclosed between curves y = x and $y = \sqrt{x}$?
 - (A) 1
 - (B) $\frac{1}{2}$
 - (C) $\frac{1}{3}$
 - (D) $\frac{1}{6}$
- 5 An object is projected at an angle of θ° to the ground with initial velocity of $u \text{ ms}^{-1}$. If the object is initially on the ground, and assuming gravity of $g \text{ ms}^{-2}$, what is the object's maximum vertical height over its time of flight?

(A)
$$\frac{u\sin\theta}{g}$$

(B) $\frac{2u\sin\theta}{g}$
(C) $\frac{u^2\sin^2\theta}{2g}$
(D) $\frac{u^2\sin2\theta}{g}$

PLEASE DO NOT DISTRIBUTE

6 If $\cos\theta = \frac{3}{7}$ and $\sin\theta < 0$, what is the exact value of $\sin 2\theta$?

(A)
$$\frac{2\sqrt{10}}{3}$$

(B) $-\frac{2\sqrt{10}}{7}$
(C) $-\frac{6\sqrt{10}}{49}$

(D)
$$-\frac{12\sqrt{10}}{49}$$

- 7 Which of the following is the range of the function $f(x) = a + b \cos^{-1}(cx)$, where a, b and c are constants?
 - (A) $\left[-\frac{1}{c}, \frac{1}{c}\right]$
 - (B) $[0, a\pi]$
 - (C) $[0, b + c\pi]$
 - (D) $[a, a + b\pi]$

8 Which of the following equations may be appropriate to model uninhibited population growth?

- (A) $P = 700e^{-0.06t}$
- (B) $P = 2000 540e^{-0.85t}$
- (C) $P = 1800e^{0.2t}$

(D)
$$P = \frac{9500}{1+4e^{-9t}}$$

PLEASE DO NOT DISTRIBUTE

- **9** Seven different coloured jellybeans were to be placed into three separate jars. How many unique ways can this be done?
 - (A) 35
 - (B) 5,040
 - (C) 30,240
 - (D) 181,440

10 Which of the following could be the differential equation represented by the slope field shown?

- (A) $\frac{dx}{dt} = \sin(2t)$
- (B) $\frac{dx}{dt} = 2\cos(2t)$
- (C) $\frac{dx}{dt} = -\frac{1}{2}\cos(t)$
- (D) $\frac{dx}{dt} = \sin\left(\frac{t}{2}\right)$

PLEASE DO NOT DISTRIBUTE

Section II

60 marks Attempt Questions 11–30

In Questions 11–30, your responses should include relevant mathematical reasoning and/or calculations.

Question 11

Differentiate with respect to x:
$$y = \tan^{-1}(x^3 + 2)$$
. 2

Question 12

Consider the two vectors $\underline{a} = \begin{pmatrix} -4 \\ -1 \end{pmatrix}$ and $\underline{b} = \begin{pmatrix} 6 \\ -3 \end{pmatrix}$.

- (a) Find |a|. 1
- (b) Find the size of the acute angle between \underline{a} and \underline{b} , rounding your solution to the nearest degree. 1
- (c) Find $proj_{\underline{a}}\underline{b}$. 1

Question 13

Find the exact value of
$$\sin\left(2\tan^{-1}\frac{3}{5}\right)$$
. 3

Question 14

Find the coefficient of
$$x^2$$
 in the expansion of $\left(2x - \frac{3}{x^2}\right)^8$. 3

PLEASE DO NOT DISTRIBUTE

Question 15

How many unique arrangements of the letters in the word EXERCISE are possible if:

(a)	No restrictions applied?	1
(b)	The arrangement had all E's next to each other?	1
(c)	The arrangement began and ended with the letter E?	1

Question 16

Using the substitution $t = \tan \frac{\theta}{2}$ solve for θ , where $\pi \le \theta \le 2\pi$: $4\cos\theta - 3\sin\theta = 1$. **3**

Round your solution(s) to the nearest minute.

Question 17

The diagram shows the graph of a function f(x).

Sketch the following curves on separate diagrams, showing all key features.

(a)	y = -f(x)		1
-----	-----------	--	---

(a)	y = 3 f(x)		1
-----	------------	--	---

(b)
$$y = \frac{1}{f(x)}$$
 2

(c)
$$y = \sqrt{f(|x|)}$$
 3

PLEASE DO NOT DISTRIBUTE

2

Question 18

Find the Cartesian equation of the following parametric equations:

 $x = 3\cos\theta$, $y = 3\sin\theta$, where $\pi \le \theta \le 2\pi$.

Question 19

Find the solution to the differential equation $\frac{dy}{dx} - \frac{\cos^2 y}{x^2 + 4} = 0$, given $y = \frac{\pi}{4}$ when $x = \frac{2}{\sqrt{3}}$. 3

Express your solution in the form y = f(x).

Question 20

Use the substitution $u = \sqrt{x+1}$ to evaluate $\int_{3}^{8} \frac{x}{\sqrt{x+1}} dx$. 3

Question 21

The area enclosed by the curve $y = \frac{4}{x}$, the *x*-axis, *y*-axis and the lines x = 4 and y = 4 is rotated about the *y*-axis, as shown in the diagram below.

Find the volume formed by the rotation.

- 8 -

Question 22

Evaluate
$$\int_{0}^{\frac{\pi}{8}} \sin 5x \cos 3x \, dx \, .$$
 3

Question 23

The surface area of a sphere is increasing at a rate of 4.2 mm²/s. If the radius is currently 1.6mm, find the rate at which the sphere's volume is increasing at. Round your solution to one decimal place.

Question 24

The polynomial $P(x) = x^3 + 12x^2 + Ax + B$, where A and B are real numbers, has roots α , $(\alpha + 2)$ and $(\alpha - 2)$.

(a)	Find the value of α .	1
(b)	Hence, or otherwise, find the value of A and B.	2

Question 25

Five letters from the word "DEVELOPER" were chosen at random to form a new fiveletter arrangement. 3

How many unique arrangements are possible?

Question 26

Prove by mathematical induction that $2^n + 5^n + 7^n$ is divisible by 7 if *n* is an <u>odd integer</u>. **3**

-9-

PLEASE DO NOT DISTRIBUTE

Question 27

Splinta wants to start a turtle farm with the four turtles he found by the lake. After renting out a small piece of land and buying the required resources, the number of turtles N in his farm grew over *t* years according to the differential equation:

(a) Show that:
$$\frac{N-1}{(N+5)(N+2)} = \frac{2}{N+5} - \frac{1}{N+2}.$$

How long will it take for Splinta to have over 50,000 turtles? Round your solution (b) 3 to the nearest year.

Question 28

Three objects with mass of 3m kg, 2m kg and m kg were connected to another object of 18kg hanging off the edge of the table by light inextensible strings in a pulley system. The objects were accelerating at a rate of $\frac{g}{3}$ m/s² along a smooth table surface, where g m/s² represents gravity, as shown in the diagram.

By resolving forces, find the value of *m*.

3

PLEASE DO NOT DISTRIBUTE

1

Question 29

A projectile was launched from a point O on the ground with initial velocity of u m/s and an angle of θ to the horizontal. The projectile was launched onto a plane inclined at α to the horizontal travelling a distance of R metres on the plane, as shown in the diagram below.

After t seconds, the horizontal (x) and vertical (y) displacements of the projectile is given as follows (**DO NOT PROVE THESE**):

$$x = u\cos\theta t$$
 and $y = -\frac{gt^2}{2} + u\sin\theta t$

where gravity is $g \text{ m/s}^2$.

(a) Show that the time taken for the projectile to land on the inclined plane *T* is:

$$T = \frac{R\cos\alpha}{u\cos\theta}.$$

(b) Show that the Cartesian equation of the projectile is:
$$y = -\frac{gx^2}{2u^2\cos^2\theta} + \frac{x\sin\theta}{\cos\theta}$$
. 1

(c) Hence, or otherwise, show that:
$$R = \frac{2u^2 \cos\theta \sin(\theta - \alpha)}{g \cos^2 \alpha}$$
. 2

PLEASE DO NOT DISTRIBUTE

1

Question 30

In ΔPQR , S is a point on PQ such that PS : SQ = 2 : 1 and T is a point on QR such that QT : TR = 2 : 1. When ST is extended it meets the extension of PR at the point U, as shown in the diagram below.

Let $\overrightarrow{PQ} = q$ and $\overrightarrow{PR} = r$.

(a) Show that
$$\overline{ST} = \frac{2}{3}r - \frac{1}{3}q$$
. 2

(b) By letting
$$\overrightarrow{PU} = \lambda \overrightarrow{PR}$$
 and $\overrightarrow{SU} = \mu \overrightarrow{ST}$, show that $PR : RU = 3 : 1$. 3

Question 31

Consider the functions $f(x) = \sqrt{16 - x^2}$ and $g(x) = x^2 - 5$.

(a) Find the expression for f(g(x)).

(b) Hence, or otherwise, find the domain and range of f(g(x)), expressing your **3** solution in set notation.

End of paper.