

Student details

Name:

Mark:

2024

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen.
- Board-approved calculators may be used.
- Reference sheet is provided separately.
- Marks may be lost for poor working out and/or poor logic.

Total marks - 100

Section I Pages 2-5

10 marks

- Attempt Questions 1 10
- Circle the BEST solution.

Section II Pages 6 - 12

90 marks

- Attempt Questions 11 34
- Your responses should include relevant mathematical reasoning and/or calculations.

PLEASE DO NOT DISTRIBUTE

Section I

10 marks Attempt Questions 1 – 10

<u>Circle the BEST solution</u> below for Questions 1 - 10.

1 Which of the following coordinates is in the 6th octant?

- (A) (4, -2, 1)
- (B) (8, 7, -3)
- (C) (-2, -2, -5)
- (D) (-1, 1, -9)

2 Which of the following is parallel to vector $r = \begin{pmatrix} 8 \\ 9 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ -1 \\ 1 \end{pmatrix}$, where λ is a constant.

(A) Vector passing through
$$\begin{pmatrix} 5\\-2\\1 \end{pmatrix}$$
 and $\begin{pmatrix} 2\\-3\\2 \end{pmatrix}$.

(B) The vector
$$\underline{a} = \begin{pmatrix} 8 \\ 9 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 6 \\ -3 \end{pmatrix}$$
.

(C) Vector passing through
$$\begin{pmatrix} 1\\ 3\\ -9 \end{pmatrix}$$
 and $\begin{pmatrix} 9\\ 12\\ 5 \end{pmatrix}$.

(D) The vector
$$\underline{b} = \begin{pmatrix} -3 \\ 8 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 7 \\ -5 \\ 3 \end{pmatrix}$$
.

PLEASE DO NOT DISTRIBUTE

Consider the statement: $\forall P,Q,R: \{P \Rightarrow R\} \Rightarrow \{P \Rightarrow Q \text{ OR } Q \Rightarrow R\}.$

Which of the following represents the statement's contrapositive?

(A)
$$\forall P,Q,R: \neg \{P \Rightarrow R\} \Rightarrow \neg \{P \Rightarrow Q \text{ OR } Q \Rightarrow R\}$$

(B)
$$\forall P,Q,R: \neg \{P \Rightarrow R\} \Rightarrow \neg \{P \Rightarrow Q \text{ AND } Q \Rightarrow R\}$$

(C)
$$\forall P,Q,R: \neg \{P \Rightarrow Q \text{ AND } Q \Rightarrow R\} \Rightarrow \neg \{P \Rightarrow R\}$$

(D) $\forall P,Q,R: \neg \{P \Rightarrow Q \text{ OR } Q \Rightarrow R\} \Rightarrow \neg \{P \Rightarrow R\}$

4 Which of the following are the solutions to the equation $z^2 - 2\cos\theta z + 1 = 0$?

- (A) $\cos\theta \pm i\sin\theta$
- (B) $\sin\theta \pm i\cos\theta$
- (C) $\sqrt{3}\cos\theta \pm i\sin\theta$
- (D) $\sec \theta \pm i \cot \theta$

5 What is the equivalent to
$$\int \frac{1}{e^x + 1} dx$$
?

(A)
$$\frac{e^{x}}{\left(e^{x}+1\right)^{2}}+c$$
(B)
$$\frac{\sqrt{e^{x}+1}}{2}+c$$
(C)
$$e^{x}\left(e^{x}+1\right)^{2}+c$$

(D)
$$\ln \left| \frac{e^x}{e^x + 1} \right| + c$$

PLEASE DO NOT DISTRIBUTE

6

 ω is a complex cube root of unit, where $\omega \neq 1$.

Which of the following equates to $(1 + 3\omega + \omega^2)(1 + \omega - 3\omega^2)$?

- (A) -8 (C) 12
- (B) 3 (D) 16

7 Which of the following is the best statement regarding $\int \sec x \, dx$?

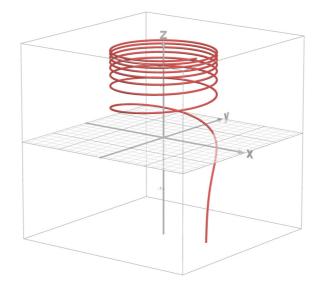
(A) It is equivalent to $\log_e |\sec x + \tan x| + c$.

(b) It is equivalent to
$$\log_e \left| \frac{1 + \tan \frac{x}{2}}{1 - \tan \frac{x}{2}} \right| + c.$$

- (C) All of the above.
- (D) None of the above.
- 8 A cannonball weighing *m* kilograms was fired from the ground with initial velocity of *u* metres per second at an angle of θ to the horizon. In addition to gravity of *g* m/s², the cannonball experiences air resistance proportional to the cannonball's velocity *v* of *mkv*.

Which of the following represents the time the cannonball takes to reach its maximum vertical height?

(A)
$$\frac{1}{k}\log_e\left(\frac{g+ku\sin\theta}{g}\right)$$


(B)
$$(g + ku\sin\theta)e^{-k}$$

(C) $\frac{1}{k}\log_e\left(\cos\left(\sqrt{gk}\right) + \frac{ku\sin\theta}{\sqrt{gk}}\sin\left(\sqrt{gk}\right)\right)$

(D)
$$\left(\cos\left(\sqrt{gk}\right) + \frac{ku\sin\theta}{\sqrt{gk}}\sin\left(\sqrt{gk}\right)\right)e^{-k}$$

PLEASE DO NOT DISTRIBUTE

- 9 What is the exact value of $(-1)^i$?
 - (A) *e*
 - (B) e^{π}
 - (C) $e^{-\frac{\pi}{2}}$
 - (D) $e^{-\pi}$
- 10 Consider the curve in the following diagram:

Which of the following position vectors is best represented by the given curve?

(A)
$$r = \left(\cos t, \sin t, \frac{1}{t}\right)$$

(B)
$$r = (\cos t, \sin t, \log_e t)$$

(C)
$$r = (\cos t, \sin t, t^2)$$

(D) $r = \left(\cos t, \sin t, e^{-t}\right)$

PLEASE DO NOT DISTRIBUTE

Section II

90 marks Attempt Questions 11–35

In Questions 11–35, your responses should include relevant mathematical reasoning and/or calculations.

Question 11

If z = 2 - 5i and w = -2 + 3i, express each of the following in the form a + ib, where $a, b \in \mathbb{R}$.

(a)	$z - \overline{z}$.	1
(b)	w^2 .	1
(c)	$\frac{10}{w}$.	1
(d)	$\sqrt{z+w}$.	2

Question 12

Consider the statement:	"If I were a nerd then I would be rich and have no friends".	2
Write down the contrapo	sitive of the statement.	

Question 13

Consider the vectors
$$\underline{a} = \begin{pmatrix} 4 \\ -1 \\ 5 \end{pmatrix}$$
 and $\underline{b} = \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}$.

(a)	Find $ \underline{a} $.		1
-----	--------------------------	--	---

(b) Find the size of the acute angle between
$$\underline{a}$$
 and \underline{b} (nearest degree). 1

(c) Find the vector projection of \underline{a} in the direction of \underline{b} . 1

2

Question 14

Find
$$\int \frac{1}{x(\ln x)^3} dx$$
.

Question 15

A particle moving along a straight line with displacement of x metres and velocity $v \text{ ms}^{-1}$ moves according to the formula:

$$v^2 = 45 - 36x - 9x^2.$$

(a)	Show that the particle moves with simple harmonic motion.	1
(b)	Find the particle's amplitude.	2

Find the particle's amplitude. (b)

Question 16

Consider two complex numbers z = 1 - i and w such that $|zw| = \sqrt{8}$ and $\arg(zw) = \frac{\pi}{12}$.

(a)	Express z in the form $re^{i\theta}$ where $r > 0$ and $-\pi \le \theta \le \pi$.	1
-----	--	---

Find *w* in the form a + ib, where $a, b \in \mathbb{R}$. (b)

Question 17

Given that z = x + iy is a point on the Argand plane such that $z\overline{z} - 2(z + \overline{z}) = 21$.

- 2 (a) Find the locus of *z*.
- Hence, or otherwise, determine the maximum value of |z-4|. 2 (b)

PLEASE DO NOT DISTRIBUTE

Question 18

An object initially on the ground was projected diagonally into the air. After t seconds, its velocity vector is given by the equation:

$$v = 20\sqrt{3}e^{-0.04t}i + (270e^{-0.04t} - 250)j.$$

where velocity is measured in metres per second.

- (a) Show that the time it takes to reach its maximum height is $25 \log_e \left(\frac{27}{25}\right)$. 1
- (b) Hence, or otherwise, find the maximum height attained by the object, rounding 2 your solution to the nearest metre.

Question 19

Consider the following vector equations of two lines:

$$r_1 = \begin{pmatrix} 5\\1\\1 \end{pmatrix} + \lambda \begin{pmatrix} -3\\-2\\4 \end{pmatrix} \text{ and } r_2 = \begin{pmatrix} 7\\0\\-3 \end{pmatrix} + \mu \begin{pmatrix} 2\\1\\6 \end{pmatrix}.$$

Determine whether the two lines have a point of intersection or are skew. Show all working.

Question 20

(a) Find real numbers *a* and *b* such that:
$$\frac{3x^3 + 10x^2 + 21x + 78}{(x^2 + 9)(x + 2)} = 3 + \frac{a}{x + 2} + \frac{b}{x^2 + 9}.$$
 2

(b) Hence, or otherwise, find
$$\int \frac{3x^3 + 10x^2 + 21x + 78}{(x^2 + 9)(x + 2)} dx$$
. 2

Question 21

Solve for z:
$$z^2 = |z|^2 - 8.$$
 2

2

PLEASE DO NOT DISTRIBUTE

2

Question 22

On an Argand diagram, shade the region where:

$$|z-1| \le 4$$
 and $|z+2i| \le 9$.

Question 23

Use integration by parts to find $\int e^{3x} \sin 4x \, dx$. 3

Question 24

Find a vector that is perpendicular to the vectors $\begin{pmatrix} 5 \\ -1 \\ -2 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$. 3

Question 25

(a)	If	$z = \cos\theta + i\sin\theta$, show that:	$z^n + z^{-n} = 2\cos(n\theta).$	2
-----	----	---	----------------------------------	---

(b) Hence, solve for z: $2z^4 + 3z^3 + 5z^2 + 3z + 2 = 0.$ 2

Question 26

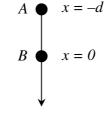
Find
$$\int \sqrt{\frac{8-x}{x}} \, dx$$
. 3

Question 27

$$z_1$$
 and z_2 are two complex numbers. Prove that $|z_1 - z_2|^2 + |z_1 + z_2|^2 = 2[|z_1|^2 + |z_2|^2]$. 2

3

2


Question 28

Prove by contradiction that there are no rational solutions to the equation:

$$z^3 + 3z + 3 = 0.$$

Question 29

Two objects, A and B, with equal mass m kg were released vertically downwards through a medium with resistance mkv, where the velocity of the object is v m/s and k is a constant. Object A is released with initial velocity U m/s from a point d metres above the object B, which was released from rest from the origin.

Assume gravity is $g \text{ m/s}^2$.

(a) For object A,

(i)	Show that the object's acceleration a is given by	a = g - kv.	1
	<i>/</i>		

(ii) Show that
$$v_A = \frac{g}{k} - \left(\frac{g-kU}{k}\right)e^{-kt}$$
. 2

(iii) Show that
$$x_A = \frac{gt - kd}{k} + \left(\frac{g - kU}{k^2}\right)\left(e^{-kt} - 1\right).$$
 2

(b) For object *B*, using the expressions above, write down similar expressions for velocity v_B and displacement x_B .

(c) Find when the objects collide.

Question 30

Evaluate:
$$\int_{0}^{\frac{\pi}{4}} \sec^3 x \, dx \, .$$

Question 31

(a)	Show that: $\cot 2x - \tan 2x = 2\cot 4x$.	2
(b)	Hence, or otherwise, prove by mathematical induction for $n \in \mathbb{Z}^+$:	3
	$\tan x + 2\tan 2x + 4\tan 4x + \dots + 2^{n-1}\tan\left(2^{n-1}x\right) = \cot x - 2^n \cot\left(2^n x\right)$	

Question 32

Find
$$\int \frac{1}{\sqrt{e^{2x} + 1}} dx$$
 [Hint: Apply the substitution method for e^x]. 3

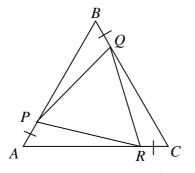
Question 33

If
$$a, b, c \in \mathbb{R}$$
 and $a > b > c$, prove: $|a - b| + |c - b| \ge a - c$. 2

Question 34

Consider the function $f(x) = 2\log_e x - \frac{x^2 - 1}{x}, x > 0.$

(a) Show that the only root of
$$f(x)$$
 is at $x = 1$. 2


(b) Let
$$g(x) = \frac{x \log_e x}{x^2 - 1}$$
, $x > 0$ and $x \neq 1$. 3

Show that $0 < g(x) < \frac{1}{2}$ for all x > 0 and $x \neq 1$.

PLEASE DO NOT DISTRIBUTE

Question 35

 $\triangle ABC$ is an equilateral triangle with points P, Q and R lying on AB, BC and AC respectively such that AP = BQ = CR, as shown in the diagram below.

Let \hat{a} , \hat{b} and \hat{c} be the unit vectors in the direct of \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{CA} respectively, and let $\overrightarrow{AB} = \lambda \hat{a}$ and $\overrightarrow{AP} = \mu \hat{a}$.

(a) (i) In terms of \hat{a} , \hat{b} , λ and μ , find the expressions for \overrightarrow{BC} and \overrightarrow{BQ} . **1**

(ii) Show that
$$\left| \overrightarrow{AQ} \right| = \sqrt{\lambda^2 + \lambda \mu + \mu^2}$$
. 2

(b) Hence, or otherwise, show that ΔPQR is an equilateral triangle. 1

Question 36

Let
$$I_n = \int_0^p x^n \sqrt{p^2 - x^2} \, dx$$
 for $n \in \mathbb{Z}^+$ and $p \in \mathbb{R}^+$.

(a) Show that
$$I_n = p^2 \frac{n-1}{n+2} I_{n-2}$$
 for integers $n \ge 2$. 3

(b) Show that
$$I_{2n} = \frac{\pi p^{2n+2} (2n)!}{2^{2n+2} n! (n+1)!}$$
 for integers $n \ge 2$. 3

End of paper.